Элементарные частицы. Тайны природы, которые нам предстоит открыть
Открытие «невидимых» элементарных частиц положило начало современной физике. В ней всё время совершаются новые грандиозные прорывы: например, подтвердилось существование бозона Хиггса. Знать, что такое лептоны, кварки и бозоны, очень важно для понимания актуальной картины мира. Мы собрали базовые знания по физике элементарных частиц, которые пригодятся всем.
В конце XVIII — начале XIX века физики были твердо убеждены, что в их науке больше нечего исследовать и никаких прорывов в ней не предвидится. Однако прошло всего полвека, и в научных журналах стали появляться статьи, описывавшие необъяснимые результаты экспериментов. То Рентген откроет лучи, которые проникают через стекло и отклоняются в магнитном поле, то Беккерель засветит фотопластинку минералом урана… Эти явления заставили людей задуматься о том, что атомный мир намного сложнее, чем они думали.
Самой первой частицей, о которой узнали физики, стал электрон. Это понятие ввел еще в конце XIX века британский ученый Джордж Стоуни, чтобы описать перенос заряда в электрохимических процессах. А в 1897 году Джозеф Томсон, исследуя «катодные лучи», выяснил, что они состоят из частиц, обладающих также и волновыми свойствами.
Какие бывают элементарные частицы
После открытия электрона ученые ввели в картину мира фотон и остальные бозоны, дополнили список лептонов и открыли кварки.
С каждым витком развития науки люди стремились поделить вещество на мельчайшие части, чтобы понять, как оно устроено. Оказалось, что вся материя, которая нас окружает, похожа на матрешку с четырьмя оболочками:
- то, что мы видим невооруженным глазом;
- молекулярная структура;
- атомная структура;
- элементарный уровень.
Последняя «оболочка» была открыта не так давно и на данный момент считается самой маленькой. Она включает в себя все элементарные или фундаментальные частицы.
Да, их очень много — но так даже интереснее. Со времен открытия электрона ученые обнаружили огромное количество фундаментальных частиц и разделили их на две большие группы: фермионы (от фамилии итальянского физика Энрико Ферми) и бозоны (в честь индийского физика Сатьендры Нат Бозе).
Элементарные частицы, в отличие от атомов, — это не всегда реально существующие объекты. Это, скорее, модели, созданные для описания разных видов взаимодействий и свойств материи.
Например, электромагнитное взаимодействие передается с помощью фотонов, ядро атома находится в стабильном состоянии благодаря мезонам — частицам, удерживающим протоны и нейтроны.
Физики выделяют разные виды взаимодействий (сильное, слабое, электромагнитное, гравитационное) и типы материи (атомы, антиматерия, темная материя, излучения). Чтобы изучить их свойства, нужно подробно описать их природу.
Чтобы разобраться в мире элементарных частиц, мы расскажем обо всех 17 частицах Стандартной модели, разделив их на две большие группы: фермионы и бозоны.
I. Фермионы
В этот класс входят 12 обычных частиц и столько же античастиц. Они противоположны по заряду: например, античастица отрицательно заряженного электрона — это положительно заряженный позитрон.
Эти 12 частиц, в свою очередь, можно поделить на две группы по 6 штук: кварки и лептоны.
Как устроен атом
Атом состоит из ядра, в котором сосредоточено более 99 % его массы, и электронной оболочки, окружающей его, как облако. Электроны, составляющие внешнюю оболочку, — это элементарные частицы. Ядро же состоит из протонов и нейтронов (вместе они называются нуклонами). Протоны заряжены положительно, чтобы компенсировать отрицательный заряд электронов на внешней оболочке, а нейтроны, как следует из названия, вообще не имеют заряда и «склеивают» ядро, не давая ему распасться (как это происходит с радиоактивными элементами).
Долгое время протоны и нейтроны считались неделимыми, но они слишком большие для элементарных частиц. Позже ученые установили, что каждая из них состоит из трех кварков.
Кварки — любители ходить в парах
В отличие от электронов кварки не могут существовать в свободном состоянии и соединяются в пары. Эти пары называются мезонами — это частицы, которые перемещаются между протонами и нейтронами и удерживают ядро в стабильном состоянии. Три кварка образуют нуклоны — протон или нейтрон. Частицы, состоящие из четырех или пяти кварков, являются экзотическими и отчасти вызывают гравитационное взаимодействие между телами.
Лептоны — одиночки
Второй тип фермионов — лептоны, их свойства совершенно другие. Кварки не могут существовать поодиночке, а лептоны, наоборот, не могут соединяться (если это, конечно, не частица со своей античастицей: объединяясь, они исчезают, выделяя энергию).
Лептоны похожи на волков-одиночек, и самый влиятельный и могущественный среди них (прямо как волк с Уолл-стрит) — электрон, самый распространенный и наиболее изученный лептон.
Долгое время ученые не могли понять, в чем «сила» электрона. В конце концов они нашли этому одно разумное объяснение: электрон — это единственная стабильная заряженная частица из своего класса. Остальные 5 заряженных лептонов не существуют дольше 2 микросекунд: они либо распадаются на несколько более мелких частиц, либо, наоборот, соединяются в одну более крупную.
Нейтрино — неуловимые лептоны
Еще один вид лептонов — нейтрино, практически неуловимые частицы, которые движутся в космосе со скоростью света. Еще с середины ХХ века проводятся эксперименты, чтобы их поймать и изучить. Многое в этих «неуловимых» частицах уже исследовано, и ученые даже пытались создать коммуникацию с их помощью, но идея осталась лишь в планах. Нейтрино могут быть индикаторами различных процессов, происходящих в ядрах звезд. Например, в нашем Солнце протекает множество термоядерных реакций каждую секунду, и практически каждая такая реакция выделяет хотя бы одно нейтрино.
Нейтрино бывают нескольких видов: электронное, мюонное и тау-нейтрино. Все эти названия взяты не с потолка.
Каждое нейтрино соответствует своему лептону (электрону, мюону, тау-лептону), так как напоминает его по своим квантовым характеристикам. Разные виды этих частиц, двигаясь совместно, могут переходить друг в друга — это называется нейтринной осцилляцией.
Итак, фермионы бывают двух видов: кварки и лептоны. Первые могут существовать только группами, а вторые — только по отдельности. Первые входят в состав ядер атомов, вторые — в состав электронных оболочек этих атомов.
А теперь мы переходим ко второй, не менее интересной группе элементарных частиц — бозонам. Готовы спорить, что она у вас на слуху благодаря одному известному ее представителю.
II. Бозоны
Невольно возникает вопрос: а чем фермионы отличаются от бозонов? Всё дело в квантовой характеристике — спи́не. У фермионов он дробный: чтобы при повороте в пространстве частица стала симметричной себе, надо повернуть ее больше чем на один полный оборот. А у бозонов спин целый — то есть либо они одинаковы, как ни крути, либо для совмещения самих с собой в пространстве их нужно повернуть на 180 или 360 градусов.
Спин обуславливает обменное взаимодействие элементарных частиц, когда между двумя одинаково заряженными частицами может возникать связь (это свойство исчезает при переходе к большим системам). Если по законам классической механики два электрона должны отталкиваться, то квантовая механика «разрешает» им находиться относительно близко друг от друга — на одной орбитали.
Бозоны, слава богу, не делятся ни на какие группы. В Стандартной модели их выделяют всего пять: фотон, W-бозон, Z-бозон, глюон и бозон Хиггса. С фотоном мы уже знакомы, его функция — переносить электромагнитное возбуждение (то есть свет разного диапазона длин волн). W- и Z-бозоны — это своего рода волшебные палочки. W-бозоны переносят электрический заряд, понижая или повышая его у выбранной цели, и могут превращать один вид кварков в другой. Z-бозоны помогают передавать импульс и спин от одной частицы к другой при их столкновении.
Выделяют 8 типов глюонов.
Глюоны напоминают кварки и фотоны одновременно: их никогда не видели в свободном состоянии, они не имеют заряда и в теории не обладают массой. Глюоны отвечают за передачу между кварками квантовой характеристики, называемой цветом (общее с теми цветами, которые мы видим, — только название).
Последний тип — бозоны Хиггса — очень странная вещь. Они существовали лишь теоретически, их долго не могли обнаружить, однако в 2012 году это удалось сделать с помощью Большого адронного коллайдера (БАК).
Бозон Хиггса обуславливает массы всех элементарных частиц. Его открытие завершило Стандартную модель.
Она описывает 3 вида взаимодействий: электромагнитное, сильное (между нуклонами в ядре атома) и слабое, но ее нельзя считать Теорией всего, так как она не описывает, например, гравитационное взаимодействие, темную материю и энергию. Так что у физики большое и светлое будущее.
Итак, бозоны переносят различные виды взаимодействий. Они имеют целочисленный спин и различаются между собой массой и свойствами. Существование всех этих частиц ученые уже доказали с помощью БАК.
Составные частицы
Фермионы и бозоны — это лишь основа всей физики элементарных частиц. Соединяясь, они образуют что-то вроде молекул. Это очень похоже на химическую реакцию: две элементарные частицы могут соединяться друг с другом, как и химические вещества.
Самый известный вид составных частиц — адроны. Их делят на два вида: барионы и мезоны. Барионы — это частицы, состоящие из кварков, в том числе протоны и нейтроны; мезоны переносят взаимодействие между нуклонами в ядрах атомов.
Физика элементарных частиц невероятно разнообразна. Кроме перечисленных основных классов выделяют также квазичастицы («почти»-частицы), которые формально не существуют: человек придумал их для описания различных природных процессов. Кроме того, есть много гипотетических частиц, существование которых экспериментально не подтверждено.
Сегодня мы знаем Вселенную едва ли на 0,1 %. С помощью физики мы пытаемся расширить границы познания и описать всё, что нам непонятно. Но каждый новый шаг вперед всё труднее: если пять лет назад вы были на острие прогресса и понимали всё, что происходит в вашей науке, то сегодня она вас озадачит своей сложностью и запутанностью.
Однако сложность добавляет физике прелесть и очарование, которое притягивает новые пытливые умы. С помощью них мы, быть может, скоро создадим Теорию всего и постигнем все тайны мироздания.
А потом природа преподнесет нам сюрприз, и окажется, что всё, что мы знали, — полная туфта.