Глия — не просто «клей»: как нейронаука переоткрыла клетки мозга, раньше считавшиеся бесполезными
В состав нервной системы входят не только нейроны, но и вспомогательные клетки разных типов, которые называются глиальными. Долгое время им отводилась второстепенная роль — защита и обеспечение нейронов энергией. Последние исследования показали, что глия участвует во многих неврологических процессах и имеет огромное значение для нормального развития и функционирования мозга.
Порез бумагой или укус собаки ощущаются через кожу, клетки которой реагируют на механическое воздействие и посылают электрический сигнал в мозг. Раньше считалось, что этот сигнал возникает в нервных окончаниях, которые находятся в коже.
Но несколько месяцев назад ученые пришли к неожиданному выводу, что некоторые из клеток, отвечающие за восприятие боли этого типа, — вовсе не нейроны, а глиальные клетки, которые, переплетаясь с нервными окончаниями, образуют сетку во внешних слоях кожи.
Тот факт, что вскрикнуть от боли нас заставляет информация, которую глиальные клетки посылают нейронам, был доказан в ходе эксперимента на мышах: когда исследователи избирательно стимулировали только глиальные клетки, мыши одергивали лапки и облизывали их — это их типичная реакция на боль.
Это открытие — лишь одно из многих за последнее время, доказывающих, что глиальные клетки гораздо важнее, чем ученые думали раньше.
Долгое время глия считалась своеобразной «прислугой» нейронов, отвечающей за их защиту и обеспечение питательными веществами. Основное внимание исследователей было направлено на сами нейроны, поскольку их способность передавать электрические сигналы не вызывала сомнения.

Но за последние пару десятилетий количество исследований глии многократно возросло.
«В мозге человека глиальные клетки настолько же многочисленны, как и нейроны. Тем не менее мы знаем об их функциях намного меньше, чем о функциях нейронов», — говорит Шай Шахам, преподаватель цитологии в Рокфеллеровском университете.
По мере того, как всё больше ученых стали обращать внимание на глию, стало появляться всё больше данных, указывающих на то, что глия играет ключевую роль в жизненно важных процессах.
Оказалось, что глиальные клетки выполняют множество функций. Одни помогают обрабатывать воспоминания, другие борются с инфекциями, третьи коммуницируют с нейронами, четвертые стимулируют развитие мозга.
Глия вовсе не прислуживает нейронам, а играет зачастую первостепенную роль в защите мозга и управлении его развитием!
Больше, чем просто «клей»
Глиальные клетки способны принимать разнообразные формы для выполнения своих функций: они бывают футлярообразными, веретенообразными и звездчатыми. Часто глия обвивается вокруг нейронов, образуя настолько густую сеть, что отдельные клетки в ней едва различимы.
Поначалу ученые даже считали их опорным скелетом, поддерживающим нервную ткань. Именно поэтому Рудольф Вирхов в XIX веке дал им название «нейроглия» (от древнегреч. γλία — «клей»).
Одна из причин, по которой ученые отвели глие настолько незначительную роль, заключалась в том, что метод окрашивания нервной ткани позволяет отчетливо разглядеть извилистые очертания нейронов, но не глии. Сантьяго Рамон-и-Кахаль, который считается первооткрывателем нейронов и основоположником нейробиологии, описал один подтип глии, объединив все остальные под общим названием «третий элемент».
К тому же функции некоторых глиальных клеток настолько тесно переплетены с функциями нейронов, что их почти невозможно изучать отдельно. Если попытаться «отключить» отдельные глиальные клетки, чтобы посмотреть, что произойдет, поддерживаемые ими нейроны умрут вместе с ними.
Но благодаря недавней революции в области цитологии у ученых появился целый арсенал инструментов для изучения глии. Более совершенные флуоресцентные зонды и системы клеточной визуализации открыли нам весь спектр форм и функций глиальной ткани.
Микроглия — иммунитет мозга
Под собирательным названием «глия» объединено несколько типов клеток с разными функциями. Олигодендроциты и шванновские клетки обволакивают нервные ткани и покрывают их миелиновой оболочкой, которая изолирует электрический сигнал и ускоряет его передачу, а астроциты с многочисленными отростками регулируют водно-солевой обмен, поддерживают работу синапсов и участвуют в метаболизме нейромедиаторов.
Но наибольший интерес в последнее десятилетие вызывает микроглия.
Микроглия была впервые описана Пио дель Рио-Ортегой еще в 1920 году, но затем ее изучение надолго застопорилось — интерес к ней возродился лишь в 1980-х годах. Сегодня, по словам Аманды Сьерры из Баскского центра неврологии Ачукарро, процесс изучения микроглии стремительно набирает обороты.
Ученым уже известно, что микроглия играет немаловажную роль при черепно-мозговых травмах, нейродегенеративных заболеваниях и воспалительных процессах. Кроме того, недавно выяснилось, что клетки микроглии действуют как макрофаги иммунной системы, нейтрализуя угрозы для мозга, исходящие от микробов и клеточного мусора, и удаляя ненужные синапсы.
Некоторые из этих функций выполняются несколькими типами глии. Астроциты и шванновские клетки, например, тоже удаляют лишние синаптические связи. Но исследователи всё больше склоняются к тому, что, несмотря на общие функции, нет достаточных оснований для объединения глиальных клеток разных типов в одну группу. Более того, в вышедшей в 2017 году статье ученые ратовали за отказ от самого термина «глия».

«У разных глиальных клеток очень мало общего, — говорит преподаватель биохимии из Кембриджского университета Гай Браун. — Не думаю, что у ярлыка „глия“ есть будущее».
Скончавшийся в 2017 году нейробиолог Бен Баррес, занимавшийся изучением глии, считал, что без широкомасштабных исследований в данной области невозможен дальнейший прогресс в нейробиологии.
С ним согласна и Аманда Сьерра: «В свое время пристальное внимание к нейронам было оправдано. Но теперь пришла очередь глии».
Нейроны и глиальные клетки не могут функционировать отдельно друг от друга. Их взаимодействие имеет решающее значение для нервной системы и формируемых ею воспоминаний, мыслей и эмоций. Однако природа этого взаимодействия по-прежнему остается загадкой.