Тьюринг, помоги! Похож ли наш мозг на компьютер?
Бросьте в меня камень, если вы никогда не слышали этого сравнения: «Мозг человека — это компьютер». Эта простая метафора вызывает холивары во всем мире, сталкивает лбами интеллектуалов и, возможно, стала причиной нескольких инсультов. Одни утверждают, что человеческое мышление не может уложиться в бинарные рамки компьютерной программы. Другие — что, невзирая на свое богатство, наше мышление остается пусть превосходным, но процессором. Но и сторонники, и противники забывают о главном: спорят они не о метафоре, а о гипотезе.
Больная метафора
Чтобы аргументированно рассуждать о мозге как компьютере, для начала нужно определиться с тем, что мы называем компьютером. Давайте пойдем от противного: от того, чем компьютер не является.
Компьютер — это точно не коробочка под вашим столом, не ноутбук на ваших коленях и не смартфон в ваших руках. Микрочипы, оперативная память и кэш — это лишь элементы компьютера. Если воспринимать его как пластиковую коробку с электронной начинкой, то, конечно, вы смело можете сказать, что мозг — точно не компьютер. Ну хотя бы потому, что серое вещество после вашего выключения не может служить жестким диском, и к вашей памяти ни у кого не будет доступа. Так вот, эту ошибку восприятия компьютера как коробочки с различными функциональными элементами совершают многие противники нашей метафоры.
Другие решительные противники сравнения мозга с компьютером часто вспоминают о том, что компьютерная метафора — лишь очередной пункт в целой серии исторических технологических сравнений. С чем только мозг не сравнивали после очередного технологического прорыва — и с гидросистемой, и с телеграфом, и с телефонным коммутатором… Теперь вот настал черед компьютера.
Так в чем же их ошибка? Дело в том, что сравнение мозга с компьютером — это не про технологии совсем. Сравнение берет начало из формального определения компьютера, которое впервые дал в 1936 году Алан Тьюринг. Для справки: в 1945 году Джон фон Нейман разработал архитектуру современного компьютера. А сами современные компьютеры появились только в 50-х годах прошлого века.
Историки до сих пор спорят о том, что же можно считать первым компьютером. Но сходятся они в одном: до 1936-го компьютеров не было. Размышления Тьюринга по большому счету касались не вычислительных систем, а человека: он изучал способности к решению задач, к вычислениям, к построению логической последовательности. Компьютеру было дано формальное определение еще до того, как он появился.
А что, если мы перевернем метафору и скажем, что компьютер работает как мозг? Вернемся к фон Нейману. Этот ученый, разрабатывая архитектуру компьютера, опирался на гипотетическую модель функционирования мозга Маккаллока и Питтса. Эти два ученых предполагали, что нейроны мозга могут либо посылать электрический «разряд», либо не посылать.
Иными словами, в их понимании нейрон зашифровывает информацию бинарным кодом: либо 1 («посылать»), либо 0 («не посылать»).
Это умозаключение позволяло предполагать, что группы нейронов действовали согласно формальной логике, что очень полезно для различного рода вычислений. Фон Нейман был прекрасно знаком с Маккаллоком, читал его работы и смог использовать его идею бинарной логики для создания компьютерной архитектуры.
Так что можно сказать, что компьютерные науки опираются на науку о мозге. Что, кстати, вовсе не означает, что мозг и компьютер работают схожим образом. Фон Нейману просто приглянулась простая аналогия работы нейронов, но по факту она не учитывает базовые принципы их функционирования.
К примеру, на самом деле нейроны посылают сигналы постоянно, а не с перерывами, а значит, о бинарной логике речи быть не может.
И фон Нейман честно говорит о том, что компьютер работает не так, как мозг).
Здоровая метафора
Ну так что же мы имеем в виду, когда называем мозг компьютером? Что означает компьютер в этой метафоре? Ответ примерно такой: мы имеем в виду машину, выполняющую алгоритм, то есть универсальную машину Тьюринга.
Итак, согласно этому определению, нам нужно несколько ключевых компонентов.
- Вводные данные, записанные в виде символов.
- Место для введения этих данных (по мнению Тьюринга, это должен быть огромный рулон бумаги).
- Набор инструкций (алгоритм) для перевода вводных данных в выходные данные.
Самое главное здесь, конечно, алгоритм — набор конкретных действий: они должны быть дискретными, то есть обособленными, например «делай А, затем Б, затем С». Действий может быть сколько угодно. К тому же их можно организовывать в цикл, например:
- Врезаться со всей дури в стену.
- Потереть голову.
- Повторить шаг (1).
Можно создавать действиям условия, но они всё равно останутся дискретными:
Алгоритмичен ли наш мозг?
Вот мы и докопались до сути вопроса: мозг не работает дискретными шагами. Мозг — это система динамических непрекращающихся процессов. Белковые молекулы внутри нейрона постоянно гоняют туда-сюда ионы калия и натрия, а сам нейрон работает как заряженный конденсатор.
Ничего пошагового в таких процессах нет: электрические разряды и передача сигналов возникают не в отдельный момент времени.
Передача сигналов от нейрона к нейрону определяет, как мы ходим, видим, говорим, думаем, планируем, действуем. И если это происходит не алгоритмично, значит, мозг точно не компьютер, так ведь?
Не так быстро, друзья. Конечно, во многих аспектах мозг работает не как машина Тьюринга: у него нет бесконечного рулона бумаги и неограниченного времени для вычислений. Ну так и у электронного компьютера тоже нет. Даже пока вы ждете загрузки системных обновлений.
Но гипотеза, что мозг работает подобно компьютеру, ставит перед нами интересные вопросы. Например, может ли передача сигнала между нейронами быть в чем-то схожа с алгоритмом? Или можно ли описать процессы в мозге с помощью алгоритма?
Если работа мозга приближена к алгоритмической, мы можем использовать знания компьютерных наук для его изучения. Если же нет, нам необходимо искать новые подходы, не связанные с вычислительными алгоритмами.
Да, наша голова работает по алгоритмам
Есть только два способа проверить версию об алгоритмичности нашего мозга. Первый: мы предполагаем, по какому алгоритму действуют животные, а потом проверяем, соответствует ли активность нейронов предложенному алгоритму. Второй: мы измеряем активность нейронов во время поведенческого действия, а затем смотрим, какой алгоритм может соответствовать этому действию.
Наука пробовала и тот, и другой подход. Давайте начнем с того, который сперва изучает поведение. Мы уже достаточно много знаем о поведении животных (к миру которых и сами принадлежим).
Существует тонна экспериментов, в которых мы просим субъекта сделать выбор между двумя предметами.
Один из самых популярных выглядит так: мы показываем людям набор хаотично двигающихся точек, однако среди этих точек есть несколько таких, которые передвигаются в одном и том же направлении (влево или вправо). Далее мы просим участников эксперимента найти эти точки и сказать, в каком направлении они двигаются. Участник смотрит на экран, наблюдает за точками, а потом выдает ответ.
Небольшие изменения условий в таких заданиях позволяет выявить уникальные модели поведенческих реакций и возникновения ошибок. К примеру, количество ошибок возрастает обратно пропорционально количеству точек, двигающихся в одном направлении: чем меньше точек, тем больше ошибок. Это очень простая математическая модель, в которой для решения задания нужно, во-первых, определить наличие одинакового направления, а затем определить само направление (где одно направление противоречит другому). Это типичный алгоритм принятия решений.
Ну что ж, раз мы пришли к алгоритму, влияющему на поведение, самое время определить, что же происходит в мозге во время принятия решения.
В мозге обезьян, принимающих решения, можно увидеть несколько видов активности: нарастание активности, связанной с верным выбором, и спад активности, связанной с неверным.
В научно-исследовательской лаборатории Майкла Шадлена показали, что каждый скачок активности точно соответствует шагам алгоритма принятия решений, то есть активность нейронов повторяет алгоритм, с которым мы столкнулись при наблюдении за поведением.
Есть и примеры экспериментов, которые идут от обратного: сначала изучение нейронной активности, а затем — подбор алгоритма, который ей соответствует. Самый известный — дофаминовая теория получения вознаграждения. Автор теории, профессор Вольфрам Шульц, продемонстрировал, как вырабатывается дофамин в ответ на поощрение. Ученый зарегистрировал несколько потрясающих наблюдений.
Например, дофаминовая активность была замечена только при неожиданной награде. Как только нейроны «понимали», при каких условиях выдается награда, выброса дофамина не следовало.
На основе экспериментальных данных Шульца две независимые группы ученых (Рид Монтаг и Петер Даян и Джим Хук и Анди Барто) предположили, что нейроны при выработке дофамина используют алгоритмы теории обучения с подкреплением.
Алгоритмы этой теории работают так: есть несколько вариантов действий. Решение принимается на основе предполагаемых последствий от выбора того или иного действия. После принятия решения вычисляется разница между предполагаемыми последствиями и реальным исходом. Если последствия соответствовали предполагаемым, ошибки не было, значит, поведение не нуждается в корректировке. Если исход получился лучше предполагаемого (позитивная ошибка), ценность этого варианта возрастает. Если исход получился хуже предполагаемого (негативная ошибка), ценность варианта падает. Такое подкрепление создает канал обратной связи с окружающим миром и приводит к дальнейшим изменениям в поведении.
Согласно данным Шульца, дофаминовые нейроны дают обратную связь по всем трем вариантам исходов: и при отсутствии ошибки, и при положительной, и при отрицательной. Удивительно, как совпали дискретные шаги алгоритма и активность нейронов в мозге.
Вы можете спросить: а как же успех глубоких нейросетей в работе с процессами, которые считались типично человеческими, например классификации изображений? Что ж, обычные нейросети в основе своей несут дискретные алгоритмы. Глубокие нейросети имеют целые дискретные слои, каждый из которых соединен со следующим и передает ему информацию. В человеческом мозге дискретных слоев нет.
Существует еще одна версия: несмотря на то, что в биологическом смысле мозг работает беспрерывно, проделываемые им операции все же дискретны.
Это может происходить так: нейронная активность идет колебательными движениями, активные фазы сменяются неактивными. К примеру, такие колебательные движения происходят при переключении внимания. Однако колебательная активность в мозге не регистрируется в течение долгого периода времени, и эти колебания никогда не приводят к полному положению «выкл.» или «вкл.». Кроме того, зарегистрированные колебания, как правило, происходят достаточно медленно; гораздо медленнее, чем основная активность мозга. Тем не менее сама идея, что мозг всё же оперирует некоторыми дискретными шагами, заслуживает внимания.
Нет, наша голова не работает по алгоритмам
Вроде бы набрали много свидетельств алгоритмической работы нашего мозга.
Вообще-то, большая часть нейронаук основывается на его алгоритмичности: какую публикацию ни открой — мозг все время что-то вычисляет и рассчитывает.
Влиятельный исследователь Дэвид Марр ставит вопрос так: ищем алгоритмы, а потом ищем часть мозга, которая запускает их. Но есть и те, кто задает вопрос иначе: если не алгоритмы, то что?
На него тоже есть ответ. Нам известно огромное количество действий, которыми мозг управляет без алгоритмов. Мы ходим, бегаем и ползаем, не вовлекая алгоритмической деятельности. При этих повторяющихся сокращениях разных групп мышц регистрируются такие же повторяющиеся всплески активности целых групп взаимосвязанных нейронов — они самостоятельно управляют движениями мышц.
Подобные нейронные цепочки возникают в мозге каждый раз, когда в теле происходят ритмичные процессы (хотя работой сердца управляет собственная фиксированная цепочка) — когда мы жуем, плаваем, дышим.
А что с единичными движениями? Например, когда мы поднимаем руку, чтобы взять стакан. Движение не повторяющееся, но и алгоритмов для его выполнения не требуется. При таких движениях происходит серия быстрой смены активности в нейронах зоны моторной коры, ответственной за руку. Они передают сигнал спинному мозгу, который передает его мышцам. Что здесь за алгоритм?
Здесь можно возразить: ну конечно, это всего лишь движения! Сложные процессы вроде памяти, планирования и мышления должны требовать вычислительных мощностей, а не просто динамической обработки.
Вообще-то, даже сложные процессы могут обойтись простой динамикой.
Вот механическое решение для работы памяти. Нам уже несколько десятилетий известно, что простое воспоминание может сохраняться и воспроизводиться активностью простой цепочки нейронов в ответ на определенные вводные данные. С их помощью запах поджаренного хлеба может вызывать в нас сложное воспоминание о визите к бабушке в далеком детстве.
А вот механическое решение для формирования прогноза. Наш мозг часто занимается прогнозированием. В этом процессе вознаграждение достаточно неопределенно: сдав отчеты вовремя, вы можете получить повышение, а можете и не получить.
Недавние исследования показали, как сеть нейронов, беспрерывно посылающих сигналы друг другу, занимаются прогнозированием. К примеру, определенная сеть нейронов решает судоку.
Есть механическое решение для почти любой задачи, связанной с вводными данными. Например, машины с неустойчивым состоянием (особый вид нейросети) представляют собой группу смоделированных нейронов, связанных между собой случайным образом и беспрерывно посылающих друг другу импульсы.
Кроме того, нейроны в этой модели разделяются на возбуждающие и тормозящие (последние не дают первым провести сигнал). Это важный момент, поскольку итоговая нейросеть работает в должной степени беспорядочно, а значит, самое легкое изменение во вводных данных вызовет абсолютно иную активность. По большому счету это означает, что любые вводные данные могут вызвать любую операцию.
Вопрос стоит так: каким образом эта сеть научится (эволюционно ли, либо с помощью обучения) строить нейронные связи нужным образом и выполнять требуемые действия? Это хороший вопрос, и на него пока нет ответа.
Влиятельный физик и математик Роджер Пенроуз посвятил две увесистые книги размышлениям о том, что мозг — это не компьютер. Но каким-то образом от этого простого утверждения он перешел к мысли о существовании квантового сознания, не допустив золотой середины. Ведь все может быть гораздо проще: мозг постоянно находится в движении, которое может подчиняться алгоритмам, а может и не подчиняться.
«Мозг как компьютер» — это не метафора, а гипотеза, которую вполне можно проверить. Чем ученые и занимаются прямо сейчас.
Ни одно исследование не сможет доказать, что вот эта определенная часть мозга работает по алгоритму Х. В науке так не бывает. Подтверждениями гипотезы служат многочисленные работы со всего мира, собираемые по крупицам. Так что точного ответа мы пока не знаем.
Считаю ли я мозг компьютером? Нет. Я готов оказаться неправым. Более того, я написал множество статей о том, как мозг реализует алгоритмы. Так что, как видите, я спокойно могу придерживаться двух точек зрения одновременно.
Подобная двойственность свойственна многим ученым: как только нужно выбрать между двумя полярно противоположными мнениями, становится ясно, что ни одно из них не может быть полностью верным.
Человеческий мозг просто создан для подобной двойственности. А может, это лишний раз доказывает, что он точно не компьютер?