Квантовый компьютер: ускользающая машина будущего
Квантовый компьютер — машина бесконечности. Никто и впрямь не понимает, как он работает, но мы попытаемся углубить свое непонимание и разобраться, для чего его создают и какие надежды на него возлагают.
Наш привычный мир рационален
Здесь у каждого события есть свои причины, за зимой более-менее регулярно приходит весна, а поезда следуют из пункта A в пункт Б. Ньютоновская классическая механика, созданная в XVII–XVIII веках, очень подходит для такой жизни: в ней, зная начальное положение системы, параметры тел и силы, действующие между ними, можно точно рассчитать, что произойдет в следующий момент. Но в начале XX века появилась квантовая механика, и привычный мир стал давать трещины.
Оказалось, что с объектами микроскопических масштабов могут происходить удивительные вещи. Электрон одновременно проходит сразу через две щели (квантовая интерференция), две частицы чувствуют друг друга на расстоянии (квантовая перепутанность), а безучастный наблюдатель влияет на ход эксперимента. Весомая, материальная реальность деревьев, домов и нового о́рбита со вкусом земляники замешана на диком хаосе и неопределенности квантовых частиц.
Это невозможно до конца понять. Сам Альберт Эйнштейн ворчал: «Бог не играет в кости», — возмущенный расчетами квантовой механики, которые дают только вероятности событий или состояний.
Квантовую механику можно только принять, как мы принимаем привычный материальный мир. Принять и научиться использовать мистические законы микромира, чем и занимаются пионеры квантовых вычислений.
Квантовый мир во плоти
Бит — это основа всех вычислений. Элементарная частица информации — одна ячейка, хранящая 0 или 1, «да» или «нет». Тот же лайк — это изменение содержимого нескольких битов на удаленном сервере в какой-нибудь Исландии, который просчитывает алгоритм, также записанный в битах и запускаемый нажатием мышки.
Основа же квантовых вычислений — это кубит, то есть бит, который может одновременно находиться и в состоянии 0, и в состоянии 1 (квантовая суперпозиция). А если точнее, бит, который внешний наблюдатель может при измерении обнаружить в состоянии 0 с вероятностью, например, 30 %, а в состоянии 1 — с вероятностью 70 %; нечто вроде микроскопического кота Шредингера, про которого точно не знают, жив он или мертв, пока не откроют коробку.
Кубитами могут быть самые разные физические объекты микроскопических размеров (при более крупных масштабах действие квантовых законов перестает быть ощутимым, и сосуществовать между «да» и «нет», быть одновременно и белым и черным становится затруднительно). Те же самые электроны, уже производящие вычисления в наших неквантовых компьютерах и смартфонах, тоже можно сделать кубитами: вместо 0, скажем, будет вращение электрона по часовой стрелке вокруг собственной оси, а вместо 1 — против часовой (это, конечно, очень упрощенная иллюстрация, но сам принцип, надеемся, понятен).
Правда, у кубитов есть один минус. Практически любое воздействие извне (повышение температуры, загрязнение, влияние электромагнитных полей) может вывести их из хрупкого состояния сосуществования двух альтернатив: открыв коробку, мы точно узнаем, жив кот или нет, а проведенное наблюдателем измерение помогает электрону определиться-таки, в какую же сторону он вращается. Именно поэтому уже построенные 512-кубитовые квантовые компьютеры канадской компании D-Wave напоминают скорее гигантские 10-футовые черные холодильники, которые охлаждают маленький чип до температуры в 150 раз меньшей, чем средняя температура космоса.
Но это еще не все сложности. Квантовые компьютеры не только требуют для своей работы мощных охлаждающих установок, но еще и дают ответы только с определенной вероятностью (Эйнштейн нас предупреждал). 2 + 2 может 100 раз оказаться равным 4, а на 101-й — уже 5.
Наконец, вычисления квантового компьютера невозможно отследить. Исследователь может только приготовить начальный набор кубитов, запустить их в написанный квантовый алгоритм, где они будут взаимодействовать друг с другом, и ждать конца вычисления. Любая попытка подсмотреть, что происходит внутри чипа, какой бы аккуратной она ни казалась, все равно будет критична для квантовых систем. Даже несколько фотонов света, просто необходимых наблюдателю, чтобы что-то увидеть, сломают все хрупкие квантовые перепутанности и суперпозиции. Магия разрушится.
Разбуженный посреди ночи человек никогда не узнает концовку сна. Сбитый на полпути квантовый компьютер уже не доведет вычисление до конца. Неудивительно, что ввиду всех этих странностей многие специалисты сильно сомневаются, что человечеству нужны квантовые компьютеры. И еще сильнее — что компания D-Wave действительно их создала. Ведь отследить, что происходит внутри квантового чипа, невозможно, а кроме него и гигантского холодильника в системах D-Wave пока есть и вполне привычные кремниевые компьютеры, с помощью которых пользователь управляет всем этим квантовым хаосом.
Не особо впечатлили скептиков и первые успехи D-Wave: их 16-кубитные компьютеры, выпущенные в 2007 году, уже умели решать судоку, рассаживать людей за обеденным столом и даже искать молекулы по базам данных — но воображение явно не поражали. Дескать, все это умеет и обычный компьютер, старательно замаскированный огромной охлаждающей системой под машину будущего.
Но как же НАСА и ЦРУ? Поддерживают разработки дорогих игрушек? Попробуем разобраться, что же все-таки умеют и чему еще должны научиться квантовые компьютеры.
Направление 1. Моделирование сложных физических систем
Впервые о квантовых компьютерах в начале 80-х заговорил известный американский физик Ричард Фейнман. Его идея была предельно проста: подобное понимается через подобное. Исследователям все чаще были нужны не просто теоретические расчеты квантовых систем, но и моделирование их поведения, которое невозможно осуществить на обычном компьютере за какое-нибудь разумное время. Ведь если одна квантовая частица может находиться одновременно в двух состояниях (0 и 1), то система из двух частиц — уже в четырех (00, 01, 10, 11), из трех — в восьми (000, 001, …, 111) и т. д.
Получается, для моделирования системы, скажем, из 10 электронов нужно сразу 1024 (2 = 1024) параллельно вычисляющих процессора, поскольку изменение состояния каждого электрона может эффектом домино моментально отразиться и на всех остальных частицах (одни комбинации нулей и единичек станут более вероятными, другие — менее), а обычный кремниевый процессор не умеет менять состояние сразу двух битов.
Впрочем, ощутимых практических успехов в области моделирования пока не добились. Но зато уже понятно, что идеальный квантовый компьютер, будь он построен, по своей вычислительной мощности превзойдет самые мощные современные машины. Ведь тот же 512-кубитовый чип — это 2 параллельно 10 512 работающих процессоров. Для сравнения: количество элементарных частиц во всей Вселенной, по оценкам ученых, не превышает 2 . Так что если даже каждая из них вдруг станет обычным цифровым процессором в огромном компьютере, D-Wave все равно решит свое судоку быстрее этой невообразимой махины.
Направление 2. Квантовая криптография
Первый рабочий алгоритм для квантовых компьютеров появился только в 1994-м: американский ученый Питер Шор придумал, как с их помощью раскладывать числа на простые сомножители, а еще через 7 лет IBM показала программу, убедительно высчитывающую 15 = 5 × 3.
Результат выглядит не очень впечатляюще, но ставит под угрозу почти всю современную систему безопасности данных. Дело в том, что один из самых распространенных криптографических алгоритмов, RSA-алгоритм, основан как раз на перемножении простых чисел, а точнее на невозможности за короткое время разложить число на простые сомножители. Одно дело, когда умножают 5 на 3, а другое — когда одно число с сотней знаков на другое с двумя сотнями. Разложить получающееся произведение, которое передают по открытому каналу как ключ к зашифрованной информации, обратно на сомножители за время, не превышающее время жизни Вселенной, обычному компьютеру пока не под силу. А вот квантовому — вполне.
Правда, серьезных прорывов в этой области пока так и не случилось. Или же о них просто предпочли умолчать.
Направление 3. Задачи поиска
Самых больших успехов квантовые компьютеры добились пока в задачах поиска. Так, 23 августа 2012 года появилось сообщение, что 128-кубитовый D-Wave One успешно справился с поставленной задачей — нашел трехмерную структуру белка по 100 известной последовательности его аминокислот.
Еще раньше в офис D-Wave Systems с чуть более понятным для обычного человека запросом обратилась компания NASA. Они хотели, чтобы квантовый компьютер занялся вполне привычным делом, но в непривычной обстановке — проложил маршрут из точки A в точку Б для марсохода Curiosity. Чем закончился тот визит, доподлинно не известно, но спустя некоторое время NASA, Google и D-Wave создали совместную лабораторию квантового искусственного интеллекта.
Квантовому компьютеру по плечу почти любая задача поиска: найти нужный номер телефона в пухлом справочнике или неожиданную закономерность в финансовых данных становится делом нескольких секунд. Современный американский физик Сет Ллойд даже создал универсальный алгоритм для 70-кубитного процессора, который может искать нужные последовательности в огромной базе расшифрованных генов всего человечества (геном одного человека содержит примерно 0,25 гигабайта информации) — если такая база когда-либо будет создана; или заменить собой гугл и яндекс — уже сейчас.
Легенда гласит, что Сет даже рассказал руководителям Google о своей идее квантового поисковика, случайно оказавшись с ними в одном джакузи, но те не приняли вызов. Кроме невероятной эффективности, алгоритм обладал еще одной особенностью: он делал все запросы и действия пользователя абсолютно невидимыми для постороннего — квантовый компьютер не позволяет подсматривать за своей работой. Впрочем, Ллойд вряд ли расстроился. Он все равно считает, что вся Вселенная — это огромный квантовый компьютер.