Этот нестабильный РНК-мир. Что такое рибонуклеиновые кислоты и почему с них могла начаться жизнь на Земле

Чем больше появляется ответов, тем больше возникает новых вопросов — это аксиома любого научного поиска. Возникновение жизни на Земле — одна из самых больших загадок, и гипотез, объясняющих появление этой жизни, множество. До относительно недавнего времени над всеми гипотезами науки о жизни довлела центральная догма молекулярной биологии: ДНК — РНК — белок, описывающая основную цепь событий, приводящую к синтезу всех белков всех организмов. Сегодня Зоя Андреева рассматривает гипотезу РНК-мира, необязательно верную, но способную свергнуть центральную догму.

Что такое РНК

РНК (рибонуклеиновая кислота) — это такая же нуклеиновая кислота, как и ДНК, и во многом она очень похожа на свою более известную родственницу. В отличие от ДНК РНК обычно не формирует двойные спирали, хотя и они, и другие сложные структуры у нее иногда встречаются. Состоит РНК из почти тех же самых «единиц», или азотистых оснований: если в ДНК встречаются аденин, гуанин, тимин и цитозин, то в РНК тимин заменяется на урацил. Кроме этого отличаются сахара: в РНК это рибоза (отсюда и буква Р в аббревиатуре), а в ДНК дезоксирибоза. Азотистое основание и сахар (их совокупность называется сахаро-фосфатным остовом) составляют своего рода кирпичик для построения нуклеиновой кислоты, и они, соединяясь друг с другом через остаток фосфорной кислоты, формируют итоговую полимерную цепь.

История изучения РНК походит то на мелодраму, то на детектив. Впервые она была выделена в далеком 1868 году. Тогда швейцарский физиолог Иоганн Фридрих Мишер выделил ее вместе с ДНК в виде непонятного нового вещества, которое он назвал нуклеином — в честь клеточного ядра (по-латински nucleus). Первоначально ученые вообще не считали ДНК и РНК хоть как-то связанными друг с другом — вплоть до того, что ДНК называли нуклеином тимуса, а РНК нуклеином дрожжей. Потом удалось выяснить состав сахаров, и РНК получила свое современное название.

Вплоть до 1940-х годов многие считали, что РНК — это нуклеиновая кислота растений и одноклеточных, тогда как ДНК можно найти только у животных. Когда экспериментально было показано, что это не так, тут же начались разговоры о том, зачем вообще она нужна.

Уже в середине века стала складываться концепция молекулярной догмы, когда было обнаружено, что РНК участвует в синтезе белка, связываясь с микросомами — теперь мы знаем эти органеллы под названием рибосом.

Постепенно РНК заняла свою позицию в догме — она работает как агент, связывающий ДНК и белок, параллельно с этим выполняя ряд других функций: от переноски аминокислот до регуляции генов. И чем больше открывали у РНК возможностей, тем больше было вопросов к ее реальному месту в жизненном цикле клетки и организма в целом.

Предпосылки развития гипотезы

РНК — уникальная молекула. Основная ее функция — это связь между геном и белком, она выражена в центральной догме молекулярной биологии: ДНК — РНК — белок. Нужный для синтеза ген, представленный в виде двухцепочечной ДНК, служит матрицей для создания одноцепочечной РНК, точно повторяющей структуру этого гена и способной перенести инструкцию по сборке белка из ядра в цитоплазму клетки. В цитоплазме РНК «находит» рибосому — молекулярную «машину» для синтеза белка. Рибосома, «читая» нуклеотиды в РНК, подбирает для будущего белка аминокислоты согласно генетическому коду — почти каждому триплету (то есть трем нуклеотидам) соответствует какая-то аминокислота (есть еще несколько стоп-кодонов, прерывающих синтез белка, и старт-кодон, с которого всё начинается). Так, нанизывая аминокислоту за аминокислотой, рибосома формирует белок. И если раньше считалось, что РНК — это просто помощник, то за последние годы появилось много данных, опровергающих ее подчиненное положение. Вполне возможно, что РНК не серая мышь рядом со своей куда более известной сестрой, а серый кардинал за ее троном.

Оказалось, что РНК не только играет роль посредника между ДНК и синтезом белка, но и обладает каталитической активностью, то есть может работать как фермент.

Долгое время считалось, что ферментами могут быть исключительно белки, и открытие рибозимов — РНК-ферментов — перевернуло представления науки о функциях РНК.

Обнаружили каталитическую активность практически случайно. Американцы Томас Чек и Сидни Альтман вообще-то просто изучали таинственные ферменты, в которых анализ показал наличие РНК. Зачем в ферментах РНК? Белок и нуклеиновую кислоту «разделили» и… неожиданно отметили, что и лишенная белка РНК справлялась со своей каталитической функцией. Сначала биохимики подумали, что это ошибка, артефакт, оставшийся или занесенный извне белок — но и искусственно созданная РНК с той же последовательностью работала как фермент. Стало понятно, что ферментативная активность больше не прерогатива белков.

Дальше — больше. Помимо каталитической активности удалось обнаружить еще одно свойство — это регулирование экспрессии генов, то есть степени их проявления. Этот процесс называется РНК-интерференцией, и участвуют в нем, конечно, не все типы РНК, а только два подтипа — микроРНК и малые интерферирующие РНК. Даже сейчас известны тысячи различных РНК, участвующие в подавлении активности гена на всех стадиях его проявления, от считывания ДНК до непосредственного белкового синтеза. Причем оказалось, что интерферирующая РНК может быть даже… двухцепочечной.

Простыми словами интерференцию можно объяснить так: маленькие молекулы РНК комплементарны тем генам, которые нужно заглушить или каким-то другим образом повлиять на их активность, и благодаря таким РНК-«ориентировкам» ферменты-киллеры могут найти уже синтезированную матричную РНК, то есть копию гена, по которой будет работать рибосома, и уничтожить ее. На самом деле механизм, конечно, сложнее, но смысл один — регуляция работы ДНК.

Особенно часто такие РНК проявляют себя в различных процессах, направленных на защиту организма, — они устраняют опасность, уничтожая нуклеиновые кислоты патогенов. Причем этот механизм достаточно древний — он есть у растений и даже, судя по всему, у одноклеточных, по крайней мере микроРНК у некоторых из них уже обнаружили.

Итак, мы знаем, что РНК сама по себе крайне загадочна — она может и хранить информацию, и катализировать реакции, и буквально держать саму ДНК на поводке. Однако для возникновения мира РНК сама РНК тоже должна была как-то возникнуть. Но как, если вокруг нет ничего, хотя бы отдаленно напоминающего нуклеиновые кислоты?

Идея о том, что РНК может просто так взять и появиться буквально из ниоткуда, казалась смехотворной — однако была доказана лабораторно. Для этого группа ученых под руководством Джона Сазерленда взяла не самые приятные вещи — сероводород и цианистый калий. Немного подержав их под ультрафиолетом, они получили… протонуклеотиды, маленькие кирпичики для создания нуклеиновых кислот. Более того, Сазерленд обнаружил возможность «самозарождения» некоторых аминокислот (Пастеру бы этот вывод вряд ли понравился). Такая гипотеза возникновения РНК выглядит крайне привлекательной, хотя бы потому, что на свежесформированной планете, которая постоянно менялась и сталкивалась то с извержениями вулканов, то с метеоритами (а они содержат довольно много цианида), этих трех ингредиентов было предостаточно. А еще в метеоритах была найдена рибоза, углевод, входящий в состав РНК (при этом дезоксирибозы, входящей в состав ДНК, в них так и не обнаружили), — соответственно, и она могла быть занесена извне.

Но возникает следующий вопрос: допустим, в мире появилась РНК и первые аминокислоты — как перейти от этого супового набора к созданию чего-то более значимого?

В начале была РНК

Университет Иллинойса, 1967 год. Молодой, ему всего 39 лет, профессор Карл Вёзе занимается делом всей своей жизни — молекулярной эволюцией. В какой-то момент Вёзе заметил, что маленькие РНК, участвующие в создании рибосом («машин» по сборке белка на основе генетического кода), — очень удобный материал для изучения мутаций и изменений, возникающих от вида к виду. Это своеобразные хронометры, и Вёзе решил прибегнуть к ним для изучения филогенетических, то есть эволюционных, деревьев.

Вообще-то Вёзе хотел опровергнуть довлеющую теорию о том, что археи суть изменившиеся бактерии. Он считал, что всё живое можно разделить на три независимых домена — археи, бактерии и животные — и что археи не просто «странные бактерии», а целое отдельное царство, развивающееся по собственному пути. В конце концов, ему это удалось, но параллельно с открытием доменной структуры жизни Вёзе, всю жизнь изучавший РНК, пришел к неожиданному выводу.

Вёзе писал:

«Мои эволюционные интересы были сосредоточены в первую очередь на бактериях и археях, эволюция которых охватывает большую часть истории планеты. Используя последовательность рибосомной РНК в качестве единицы измерения эволюции, мы реконструировали филогенетическое древо обеих групп и, таким образом, предоставили обоснованную систему классификации безъядерных организмов. Открытие архей фактически было продуктом этих исследований».

Источник: On the evolution of cells

И вот накопленные знания об РНК, ее свойствах и способности изменяться наталкивают Вёзе на мысль, что именно РНК была тем «посредником» между миром неорганических молекул и жизнью. В этом ему сильно помогает открытие у РНК способности к катализу — то, что раньше считалось только белковой привилегией, оказывается вовсе не редкостью для маленьких нуклеиновых кислот.

Вёзе приходит к идее РНК-мира — всё началось с РНК, которая самокопировалась в воде и в какой-то момент начала самостоятельно создавать пептиды (небольшие белки). Но тогда это была всего лишь гипотеза.

Обрастать плотью доказательств гипотеза стала позже, с приходом на мировую научную арену новых молекулярных биологов, в частности Уолтера Гилберта. Он занимался разработкой методов секвенирования — расшифровки нуклеотидной последовательности и за это в 1980 году получил Нобелевскую премию вместе с Полом Бергом. Но, как любой крупный ученый, Гилберт интересовался многим и в 1986 году опубликовал статью, развивающую идеи Вёзе, — «Происхождение жизни. РНК-мир». Именно Гилберт придумал для гипотезы емкое название — РНК-мир.

Все полученные данные об РНК неплохо укладывались в эту теорию. Даже организмы, содержащие только РНК без присутствия ДНК, нашлись — РНК-вирусы, обширная группа, включающая и представителей семейства коронавирусов. Нашлись и косвенные подтверждения гипотезы в самой молекулярной догме и процессах репликации (то есть удвоения) ДНК. Дело в том, что если рассматривать всех участников молекулярной догмы, то можно заметить одну важную деталь: рибосомы для синтеза белка есть у всех и в целом очень похожи по строению — не важно, у кого мы будем брать рибосому, у архей, бактерий или эукариот. Та же ситуация с процессом снятия копии, то есть синтеза матричной РНК. А вот участники процесса репликации ДНК немного разнятся у разных царств, хотя процесс идейно похож. Из этого наблюдения у ряда ученых родилось любопытное предположение: репликация ДНК появилась позже рибосом и системы синтеза РНК, хотя четких доказательств пока нет.

Теоретически именно ДНК могла возникнуть как вспомогательный элемент догмы: нечто крупное и неповоротливое, что удобно хранить, поднимая время от времени нужные гены.

Возможно даже, что в какой-то период развития существовали и РНК-ДНК-гибриды. Так мир РНК постепенно превращался в мир ДНК, став тем, что мы знаем сегодня. Превратить РНК в ДНК в целом не так уж сложно — существует процесс обратной транскрипции, как раз его и используют в своем жизненном цикле РНК-вирусы. Впрочем, оказалось, что РНК способна и к самокопированию, и даже к изменчивости, то есть накоплению мутаций и некоторого рода эволюции. Эксперименты, показавшие эти ее свойства, были проведены еще в прошлом веке и тоже стали кирпичиком новой гипотезы. Одним из первых их провел британский молекулярный биолог Лесли Орджел, который, помимо своих научных исследований, известен забавным «правилом Орджела»: «Эволюция умнее, чем ты».

К началу нового века гипотеза РНК-мира сформировалась окончательно. Многократно самокопирующаяся РНК действительно могла породить всё живое на Земле, постепенно отграничив себя от пространства и сформировав протоклетку. Но, как это обычно случается в науке, возникли новые вопросы. В первую очередь ко второй части молекулярной догмы: как именно появилась крепкая связь между РНК и аминокислотами и как, наконец, появилась система синтеза белка?

Предполагаемая схема «первоклетки» — РНК, окруженная билипидным мембранным слоем. Источник

Но есть нюанс

Гипотеза РНК имеет обширную доказательную базу и по праву считается одной из самых логичных и подходящих для объяснения формирования жизни. Но и у нее есть недостатки, или, вернее, вопросы, ответы на которые в рамках самой гипотезы найти сложно.

Во-первых, РНК очень нестабильна, а время ее жизни крайне ограничено. Сложно представить себе «начало начал», способное распасться при малейших изменениях в окружающей среде. РНК нуждается в ионах двухвалентных металлов, в основном в магнии, но при этом распадается при их слишком большой концентрации. РНК любит кислую среду, но практически не выдерживает щелочной.

Во-вторых, много вопросов и к самому «случайному» синтезу. Да, сахара действительно могли быть занесены извне, и да, протонуклеотиды действительно могли быть синтезированы из «того, что было». Но вот представить себе синтез итоговой молекулы РНК сложно — слишком много условий должно было совпасть для этого (та же рибоза если и была занесена из космоса, то явно в очень малых количествах). Экспериментально, впрочем, возможность соединения сахара и нуклеотида уже была показана, но ведь есть и третий участник — остаток фосфорной кислоты, и о его ранней судьбе данных пока нет. Всё это привело к тому, что из гипотезы РНК-мира возникла подгипотеза — пре-РНК-мира: в начале появились первичные метаболические компартменты-протоклетки, а потом уже в них пошел синтез реплицирующихся молекул РНК, где возникали все возможные варианты соединения трех участников, пока не был найден единственный верный.

В-третьих, возникает вопрос о формировании протоклетки. Да, мембрана очень полезна — она защищает хрупкую РНК, позволяя ей «жить» чуть дольше, чем просто в обычном растворе. Но точно так же она отделяет РНК от необходимых ей элементов — нуклеотидов и ионов. То есть для формирования первых бислоев с включенной в них РНК уже должны были появиться какие-то простые системы закачки или хотя бы связывания нужных элементов, своего рода первичные челночные системы. Даже это в целом представить можно, но каким образом РНК координировала их работу?

Из предыдущего вопроса вполне логично вытекает следующий: каким образом эти белки оказались встроены в мембрану, а главное — как появился генетический код, позволяющий синтезировать эти белки?

Есть предположения, основанные на данных эксперимента, что в самом начале РНК-мира транспортных РНК, которые доставляли аминокислоты к рибосоме, было всего две и синтез шел путем проб и ошибок. В любом случае вопросов всё еще много, но главный недостаток гипотезы РНК-мира — это, конечно, большое количество необходимых совпадений.

Конкретных ответов на вопросы о связи РНК с белком и генетическим кодом до сих пор нет, хотя, учитывая скорость развития науки в целом и молекулярной биологии в частности, можно ожидать хоть каких-то проблесков в ближайшее время. В любом случае РНК-мир определенно предлагает относительно стройную гипотезу, в которую укладывается множество самых разных фактов. Человечество вряд ли когда-нибудь сможет со стопроцентной вероятностью сказать, как всё было «на самом деле» — слишком долгим, хаотичным и древним был этот процесс, но почему бы не попытаться?