Последние открытия в нейробиологии: как управлять мозгом, регулировать зрительную память и по-новому использовать ресурсы человека

Во всем мире выделяются колоссальные средства на исследования работы мозга, а ученые день за днем совершают все новые и новые открытия в нейробиологии, которые изменят человечество полностью. Делимся с вами самыми громкими новостями из сферы изучения мозга за последние месяцы, которые перевернут ваше представление о самих себе.

В Китае хотят создать атлас головного мозга

Китайцы выделяют огромные ресурсы на науку. Последней из значительных инвестиций стало вложение в создание научно-исследовательского центра по изучению мозга HUST-Suzhou Institute for Brainsmatics — 450 миллионов юаней (67 миллионов долларов).

Этот центр в первую очередь будет заниматься составлением полного атласа головного мозга, дающего максимально широкое представление о работе нашего сознания.

Для этого мозг режется на супертонкие пласты, которые просматриваются через мощнейший электронный микроскоп, с тем чтобы «считать» связи нейронов между собой, после чего все собранные нейронные корреляторы будут внесены в некое подобие атласа. Начнут с мышей, а следующий этап — мозг человека.

На самом деле это не первая подобная попытка в науке. Уже сейчас существует похожий «атлас», который был составлен сотрудниками Алленовского института исследований мозга. Их работы лежат в открытом доступе в интернете. Однако китайцы собираются уделить особое внимание не ткани мозга как таковой, а нейронным коррелятам (небольшим группкам нейронов), которые отвечают за сознание и направленность внимания.

Как максимально использовать ресурсы мозга

Нейроисследователи из Высшей школы экономики и университетской клиники Шарите в Берлине выяснили, что может влиять на скорость реакции спортсменов на старте: почему одни срываются с места сразу, как слышат «Марш!», а другие задерживаются на доли секунды, теряя драгоценное время. Оказывается, все зависит от того, на какую фазу колебаний мозга пришелся стимул (например, слово «марш»).

Эти колебания влияют не только на скорость реакции, но и на работоспособность человека в целом. Например, от них зависит даже запоминание информации: одну фразу вы выучиваете с лету, а из другой никак не можете вызубрить самое простое.

Так вот: ученым удалось разработать новый метод, предсказывающий, в какие именно моменты мозг обрабатывает информацию быстрее, а в какие — медленнее.

Делается это с помощью обычного электроэнцефалографа (ЭЭГ), замеряющего частоту колебаний нейронов. В скором будущем можно ожидать появления гаджета, который позволит переводить наш мозг в новый регистр работы, более продуктивный для тех или иных целей.

Как управлять мозгом?

Исследователи из Университета штата Нью-Йорк в Баффало научились управлять живыми существами. В прямом смысле. Совсем недавно они продемонстрировали, как заставляли мышей бежать, крутиться на месте, повергали их в ступор, так что ни одна лапка не могла пошевелиться.

Но в этом опыте обычные животные не участвовали, так как пока для такого рода управления сознанием подходят лишь генетически модифицированные особи.

Сначала подопытным грызунам встроили ген белка, который реагирует на температуру, из-за чего нейроны начинают действовать так или иначе под воздействием тепла. Затем в определенную часть мозга этих мышей ввели магнитные наночастицы из феррита кобальта и феррита марганца, которые работают как «нагреватель» и меняют температуру нейронов. Далее дело за малым — поместить мышей в пространство с переменным магнитным полем. Это поле, направленное извне, повышает или понижает активность разных участков мозга, и сознание становится управляемым.

Кстати, магнитно-температурная стимуляция с целью воздействия на мозг применяется давно.

В этом году даже был проведен первый опыт над людьми: сознанием, конечно, не управляли, но смогли улучшить память подопытным.

Как заставить вас вспомнить то, чего вы никогда не видели

Исследователи из Токийского университета провели интересный эксперимент над обезьянами. Сначала макак в течение трех месяцев учили распознавать знакомые и незнакомые изображения. Потом им показывали разные картинки, одновременно стимулируя определенную группу нейронов с помощью света или электричества, — и в результате обезьяний мозг стал все путать.

В зависимости от того, какой подавался сигнал (световой или электрический), итог эксперимента был диаметрально противоположным:

  • стимуляция периренальной коры импульсом света превращала незнакомые предметы в знакомые;
  • электрические сигналы, направленные в заднюю часть коры, делали все объекты незнакомыми (хотя при стимуляции передней коры эффект был тот же, что и при световом воздействии).

Это значит, что периренальная кора играет ключевую роль в различении того, что нам доводилось видеть, и незнакомых объектов. Если опыты будут идти успешно, в дальнейшем стимуляция коры может помочь в лечении расстройств, связанных с памятью.

Как мозг человека распознает знакомые и незнакомые лица

Исследователи из Гарварда узнали, что у нас в голове при рождении нет никакой зоны, отвечающей за распознавание знакомых и незнакомых, — она развивается по ходу жизни. Оказывается, чтобы мозг научился узнавать какой-то образ, его нужно «установить» в голову, а потом сделать так, чтобы зрительный анализатор свыкся с конкретным объектом.

К этому выводу ученых привел эксперимент на обезьянах. Часть новорожденных макак забрали от родителей и поместили в бокс, а других оставили в обществе обезьян. Первых кормили и поили исключительно в масках, никогда не показывая свои лица, вторым давали еду без масок.

Когда и тем и другим исполнилось по 200 дней, им показали групповой портрет людей и обезьян. В итоге та группа макак, которая выросла в обществе себе подобных, различала на фото и родителей, и незнакомых, а приматы, жившие в одиночестве, почти не обращали внимания на лица с фотографии, они смотрели на руки.

Что интересно, обе группы макак прошли сканирование в магнитно-резонансном томографе незадолго до того, как им показали фото. И знаете, что обнаружилось? Что у одиноких обезьян в зрительной коре полностью отсутствовали участки, отвечающие за идентификацию лиц, зато были чрезмерно развиты зоны, ответственные за распознавание рук. Это, вероятно, объясняется тем, что еду и ласку обезьяны получали «от рук», не видя лиц ученых.

Новые данные могут помочь при работе с психоневрологическими расстройствами вроде прозопагнозии, когда больной не узнает даже свое лицо. Исследователи допускают, что если научиться выборочно развивать зрительные зоны, то можно будет избегать подобных проблем.